Sensitivity Analysis for Data Mining
نویسنده
چکیده
An important issue of data mining is how to transfer data into information, the information into action, and the action into value or profit. This paper presents a study on applying sensitivity analysis to neural network models for a particular area in data mining, interesting mining and profit mining. Applying sensitivity analysis to neural network models rather than just regression models can help us identify sensible factors that play important roles to dependent variables such as total profit in a dynamic environment.
منابع مشابه
Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملApplication of Data-Mining Algorithms in the Sensitivity Analysis and Zoning of Areas Prone to Gully Erosion in the Indicator Watersheds of Khorasan Razavi Province
Extended abstract 1- Introduction Gully erosion is one of the most important sources of sediment in the watersheds and a common phenomenon in semi-arid climate that affects vast areas with different morphological, soil and climatic conditions. This type of erosion is very dangerous due to the transfer of fertile soil horizons, and the reduction of water holding capacity also is a factor for s...
متن کاملComparison of Four Data Mining Algorithms for Predicting Colorectal Cancer Risk
Background and Objective: Colorectal cancer (CRC) is one of the most prevalent malignancies in the world. The early detection of CRC is not only a simple process, but it is also the key to its treatment. Given that data mining algorithms could be potentially useful in cancer prognosis, diagnosis, and treatment, the main focus of this study is to measure the performance of some data mining class...
متن کاملPredicting Type2 Diabetes Using Data Mining Algorithms
Background and purpose: Today, information systems and databases are widely used and in order to achieve higher accuracy and speed in making diagnosis, preventing the diseases, and choosing treatments they should be merged with traditional methods. This study aimed at presenting an accurate system for diagnosis of diabetes using data mining and a heuristic method combining neural network and pa...
متن کاملComparison of the Efficiency of Data Mining Algorithms in Predicting the Diagnosis of Diabetes
Background: Diabetes is one of the major health problems in Iran and about 4.6 million adults suffer from this disease. Poor diagnosis of this disease has caused half of this number to be unaware of their disease. In recent years, along with the use of computers in data analysis and storage, the volume and complexity of data has increased dramatically. Methods: In health organizations, data pl...
متن کامل